Derivatives Pricing and Trading in Incomplete Markets

Dennis Yang
ATMIF LLC
dennis.yang@atmif.com

November, 2006

Outline

Describe THE Idea

The Risky Bond Example

Incomplete Market Models

Model:

- Abstraction of reality
- Simulated option game
- No absolute correctness in finance

What are the logical consequences after establishing a belief?

Incomplete Market Models

Model:

- Abstraction of reality
- Simulated option game
- No absolute correctness in finance

What are the logical consequences after establishing a belief?
Incomplete Markets:
Cannot eliminate risks associated with a derivative position.
Causes for Incompleteness:
Transaction costs, Stochastic vloatility, Jumps, Trading contraints, etc.

Reality is much better represented by incomplete markets.

Preference Question

Why is it necessary?

- The final wealth is a random variable.
- Different strategies (e.g. hedging schemes) produce different probability density functions of the final wealth.
- Must find a way to rank different strategies.

Example:

Strategy A: a Gaussian with mean 1.0, standard deviation 1.0; Strategy B: a Gaussian with mean 0.5 , standard deviation 0.4 . Which one do you choose?

Utility Function

Standard approach is the expected utility theory

$$
E[U]=\int U(w) \rho(w) d w
$$

Change \int to \sum if w is discrete.
$U(w)$ is increasing and concave. Affine transformation freedom of utility functions.

Utility Function

Standard approach is the expected utility theory

$$
E[U]=\int U(w) \rho(w) d w
$$

Change \int to \sum if w is discrete.
$U(w)$ is increasing and concave.
Affine transformation freedom of utility functions.

Use the negative exponential utility function

$$
U(w)=-\frac{1}{\gamma} \exp (-\gamma w)
$$

Large risk aversion parameter γ means more risk averse.
γ and position size appear together as a product.

Reason: Memoryless, Solvable

Fair Value

Fair value is the model output price of a derivative contract.

Fair Value

Fair value is the model output price of a derivative contract.

How to use your fair value f :
if $p<f$, you buy;
if $p=f$, you hold;
if $p>f$, you sell;
where p is the market price of the derivative.

Review

The "Aha!" moment is coming up soon.

Review

The "Aha!" moment is coming up soon.

Four ingredients:

- Logic

Review

The "Aha!" moment is coming up soon.

Four ingredients:

- Logic
- Incomplete market model

Review

The "Aha!" moment is coming up soon.

Four ingredients:

- Logic
- Incomplete market model
- Utility function

Review

The "Aha!" moment is coming up soon.

Four ingredients:

- Logic
- Incomplete market model
- Utility function
- Notion of fair value

Aha!

In a local equilibrium when $p=f$.

Aha!

In a local equilibrium when $p=f$.
The equilibrium state is optimal!

Aha!

In a local equilibrium when $p=f$.
The equilibrium state is optimal!
Aha! The link: derivative pricing and portfolio optimization

Aha!

In a local equilibrium when $p=f$.
The equilibrium state is optimal!
Aha! The link: derivative pricing and portfolio optimization
What are the necessary conditions for optimality?
\Longrightarrow Equations for computing the fair value

New Pricing Principle

Local Equilibrium Principle $>$ Arbitrage Principle

New Pricing Principle

Local Equilibrium Principle > Arbitrage Principle

Local equilibrium pricing Arbitrage pricing
Complete delta hedging \& $B S$ eq. delta hedging $\Rightarrow B S$ eq. Incomplete unique and correct a very wide range

New Pricing Principle

Local Equilibrium Principle $>$ Arbitrage Principle
Local equilibrium pricing Arbitrage pricing
Complete delta hedging \& BS eq. delta hedging $\Rightarrow \mathrm{BS}$ eq. Incomplete unique and correct a very wide range

Explicit link: Real measure \longrightarrow Pricing measure
Warning: No more freedom to yank a "risk neutral" measure out of thin air, i.e. cannot model "risk neutral" measure directly.

Outline

Describe THE Idea

The Risky Bond Example

Model

- unit face value zero-coupon bond maturing at time T
- probability of default is d
- zero interest rate and other idealized assumptions
- current market price of the illiquid risky bond is p

This is an incomplete market model.
The risky bond is considered as a derivative here.
This simplest financial model goes a long way to explain all the relevant concepts.

Goal: systematic trading decisions based on the model

Portfolio Optimization

The expected utility of the final wealth is

$$
E[U]=(1-d) U\left(w_{0}+(1-p) \hat{n}\right)+d U\left(w_{0}-p \hat{n}\right)
$$

Set the first order derivative w.r.t. \hat{n} to zero

$$
(1-d)(1-p) U^{\prime}\left(w_{0}+(1-p) \hat{n}\right)=d p U^{\prime}\left(w_{0}-p \hat{n}\right)
$$

Portfolio Optimization

The expected utility of the final wealth is

$$
E[U]=(1-d) U\left(w_{0}+(1-p) \hat{n}\right)+d U\left(w_{0}-p \hat{n}\right)
$$

Set the first order derivative w.r.t. \hat{n} to zero

$$
(1-d)(1-p) U^{\prime}\left(w_{0}+(1-p) \hat{n}\right)=d p U^{\prime}\left(w_{0}-p \hat{n}\right)
$$

The optimal position is (no wo

$$
\gamma \hat{n}=\ln \frac{(1-d)(1-p)}{d p}
$$

Fair Value

Let n be your current position, your fair value of the risky bond is

$$
f=\frac{1-d}{(1-d)+d \exp (\gamma n)}
$$

Inversion:
What market price makes the current position optimal?

Fair Value

Let n be your current position, your fair value of the risky bond is

$$
f=\frac{1-d}{(1-d)+d \exp (\gamma n)}
$$

Inversion:
What market price makes the current position optimal?

Proof:

- if $p<f$, then $\hat{n}>n, \Rightarrow$ you buy;
- if $p=f$, then $\hat{n}=n$, \Rightarrow you hold;
- if $p>f$, then $\hat{n}<n$, \Rightarrow you sell.

Fair Value

Let n be your current position, your fair value of the risky bond is

$$
f=\frac{1-d}{(1-d)+d \exp (\gamma n)}
$$

Inversion:
What market price makes the current position optimal?

Proof:

- if $p<f$, then $\hat{n}>n, \Rightarrow$ you buy;
- if $p=f$, then $\hat{n}=n$, \Rightarrow you hold;
- if $p>f$, then $\hat{n}<n$, \Rightarrow you sell.
f depends on the model parameter d-no surprise.
f also depends on your risk preference γ and current position n !

Fair Value

Let n be your current position, your fair value of the risky bond is

$$
f=\frac{1-d}{(1-d)+d \exp (\gamma n)}
$$

Inversion:
What market price makes the current position optimal?

Proof:

- if $p<f$, then $\hat{n}>n, \Rightarrow$ you buy;
- if $p=f$, then $\hat{n}=n$, \Rightarrow you hold;
- if $p>f$, then $\hat{n}<n$, \Rightarrow you sell.
f depends on the model parameter d-no surprise.
f also depends on your risk preference γ and current position n !
The fair value concept is only meaningful when you take the personal rather than the market perspective.

Source of Risk

Incomplete markets \Rightarrow Unhedgable Risks

Source of Risk

Incomplete markets \Rightarrow Unhedgable Risks
Q: What is the source of the risk?
A: Having a position (your position!).
Incompleteness + Risk Aversion \Rightarrow Position Dependency

Source of Risk

Incomplete markets \Rightarrow Unhedgable Risks
Q: What is the source of the risk?
A: Having a position (your position!).
Incompleteness + Risk Aversion \Rightarrow Position Dependency
Current Literature:
Missing Position Dependency $=$ Missing Risks

Source of Risk

Incomplete markets \Rightarrow Unhedgable Risks
Q: What is the source of the risk?
A: Having a position (your position!).
Incompleteness + Risk Aversion \Rightarrow Position Dependency
Current Literature:
Missing Position Dependency $=$ Missing Risks
The position effect can offer natural explanations to many real world phenomenons.

How to Trade

Position dependency $f(n) \Rightarrow$ Natural trading strategy
Trading Rule: (do not require gut feelings)
Make post-trade fair value equal the market price

$$
f(n+m)=p
$$

This is the local equilibrium equation.

How to Trade

Position dependency $f(n) \Rightarrow$ Natural trading strategy

Trading Rule: (do not require gut feelings)

Make post-trade fair value equal the market price

$$
f(n+m)=p
$$

This is the local equilibrium equation.
The solution is

$$
m=\frac{1}{\gamma} \ln \frac{(1-d)(1-p)}{d p}-n=\hat{n}-n
$$

The optimal trading size m is simply the optimal position \hat{n} (post-trade) minus the current position n (pre-trade).

How to Trade

Position dependency $f(n) \Rightarrow$ Natural trading strategy

Trading Rule: (do not require gut feelings)

Make post-trade fair value equal the market price

$$
f(n+m)=p
$$

This is the local equilibrium equation.
The solution is

$$
m=\frac{1}{\gamma} \ln \frac{(1-d)(1-p)}{d p}-n=\hat{n}-n
$$

The optimal trading size m is simply the optimal position \hat{n} (post-trade) minus the current position n (pre-trade).

Incomplete Market Model + Risk Aversion = How to Trade

Personal Supply-Demand Curve

Define a curve $q(m):=f(n+m)$

$$
q(m)=\frac{1-d}{(1-d)+d \exp [\gamma(n+m)]}
$$

$$
d=0.05, \gamma n=0.5
$$

Personal Supply-Demand Curve

Define a curve $q(m):=f(n+m)$

$$
q(m)=\frac{1-d}{(1-d)+d \exp [\gamma(n+m)]}
$$

$$
p<f(n) \Rightarrow m>0 \text { (demand) }
$$

$$
p>f(n) \Rightarrow m<0 \text { (supply) }
$$

$$
d=0.05, \gamma n=0.5
$$

Personal Supply-Demand Curve

Define a curve $q(m):=f(n+m)$

$$
q(m)=\frac{1-d}{(1-d)+d \exp [\gamma(n+m)]}
$$

$p<f(n) \Rightarrow m>0$ (demand)
$p>f(n) \Rightarrow m<0$ (supply)
large $|p-f(n)| \Rightarrow$ large $|m|$

$$
d=0.05, \gamma n=0.5
$$

Personal Supply-Demand Curve

Define a curve $q(m):=f(n+m)$

$$
\begin{aligned}
& q(m)=\frac{1-d}{(1-d)+d \exp [\gamma(n+m)]} \\
& p<f(n) \Rightarrow m>0 \text { (demand) } \\
& p>f(n) \Rightarrow m<0 \text { (supply) } \\
& \text { large }|p-f(n)| \Rightarrow \text { large }|m| \\
& \text { downward sloping guarantees } \\
& \text { equilibrium state } \\
& \text { automatic inventory control }
\end{aligned}
$$

Generating Quotes

The personal supply-demand curve is also called quote price curve.

Generating Quotes

The personal supply-demand curve is also called quote price curve.

Let $m_{b}>0$ (bid) and $m_{a}<0$ (ask)
Making a market: Posting four numbers
$\left\{q\left(m_{b}\right),\left|m_{b}\right|\right\} —\left\{q\left(m_{a}\right),\left|m_{a}\right|\right\}$, e.g., $\{0.875,0.5\} —\{0.950,0.5\}$
\{bid price, bid size\}—\{ask price, ask size\}

Generating Quotes

The personal supply-demand curve is also called quote price curve.

Let $m_{b}>0$ (bid) and $m_{a}<0$ (ask)
Making a market: Posting four numbers
$\left\{q\left(m_{b}\right),\left|m_{b}\right|\right\} —\left\{q\left(m_{a}\right),\left|m_{a}\right|\right\}$, e.g., $\{0.875,0.5\}-\{0.950,0.5\}$
\{bid price, bid size\}-\{ask price, ask size\}
Natural market maker!

Arbitrage Price

Definition for buy and sell arbitrage prices (Why?)

$$
\begin{aligned}
a^{b} & :=\lim _{m \rightarrow+\infty} f(n+m) \\
a^{s} & :=\lim _{m \rightarrow-\infty} f(n+m)
\end{aligned}
$$

a^{b} and a^{s} are position and preference independent.

Arbitrage Price

Definition for buy and sell arbitrage prices (Why?)

$$
\begin{aligned}
a^{b} & :=\lim _{m \rightarrow+\infty} f(n+m) \\
a^{s} & :=\lim _{m \rightarrow-\infty} f(n+m)
\end{aligned}
$$

a^{b} and a^{s} are position and preference independent.

Arbitrage prices are not useful in incomplete markets because (a^{b}, a^{s}) form a wide range.

For the risky bond, $a^{b}=0$ and $a^{s}=1$.

Certainty Equivalent Profit and Loss (CEPL)

How to measure a trade?

- Realized P\&L: a random ex-post quantity
- Gain in expected utility: no natural scale
- CEPL: convert expected utility gain into wealth

Certainty Equivalent Profit and Loss (CEPL)

How to measure a trade?

- Realized P\&L: a random ex-post quantity
- Gain in expected utility: no natural scale
- CEPL: convert expected utility gain into wealth

Trading m units at p per bond:

$$
E_{1}[U]=(1-d) U\left(w_{0}-p m+n+m\right)+d U\left(w_{0}-p m\right)
$$

Taking the lump sum Υ in lieu of the trade:

$$
E_{2}[U]=(1-d) U\left(w_{0}+\Upsilon+n\right)+d U\left(w_{0}+\Upsilon\right)
$$

Certainty Equivalent Profit and Loss (CEPL)

How to measure a trade?

- Realized P\&L: a random ex-post quantity
- Gain in expected utility: no natural scale
- CEPL: convert expected utility gain into wealth

Trading m units at p per bond:

$$
E_{1}[U]=(1-d) U\left(w_{0}-p m+n+m\right)+d U\left(w_{0}-p m\right)
$$

Taking the lump sum Υ in lieu of the trade:

$$
E_{2}[U]=(1-d) U\left(w_{0}+\Upsilon+n\right)+d U\left(w_{0}+\Upsilon\right)
$$

CEPL definition: Indifferent $\Rightarrow E_{1}[U]=E_{2}[U]$

$$
\Upsilon(m, p)=-\frac{1}{\gamma} \ln \frac{d+(1-d) \exp [-\gamma(m+n)]}{d+(1-d) \exp (-\gamma n)}-m p
$$

Dimensionless CEPL Surface $\gamma \Upsilon(m, p)$

CEPL against Trading Price

Sideway view of the surface plot

CEPL against Trading Size

Front view of the surface plot

Portfolio Indifference Price

Indifferent between lump sum h and position n

$$
U\left(w_{0}+h\right)=(1-d) U\left(w_{0}+n\right)+d U\left(w_{0}\right)
$$

Explicit formula

$$
h(n)=-\frac{1}{\gamma} \ln [d+(1-d) \exp (-\gamma n)]
$$

Note $n=0 \Rightarrow h=0$.

Portfolio Indifference Price

Indifferent between lump sum h and position n

$$
U\left(w_{0}+h\right)=(1-d) U\left(w_{0}+n\right)+d U\left(w_{0}\right)
$$

Explicit formula

$$
h(n)=-\frac{1}{\gamma} \ln [d+(1-d) \exp (-\gamma n)]
$$

Note $n=0 \Rightarrow h=0$.

The CEPL formula can be rewritten as

$$
\Upsilon(m, p)=h(m+n)-h(n)-m p
$$

Can be deduced from the notion of indifference.

Tangent Relation

$$
f(n)=h^{\prime}(n)
$$

Easy proof mathematically

Tangent Relation

$$
f(n)=h^{\prime}(n)
$$

Easy proof mathematically
Two proofs based on financial interpretations:
Proof \#1: Infinitesimal trade after establishing equilibrium

$$
0=h(\epsilon+n)-h(n)-\epsilon p
$$

Tangent Relation

$$
f(n)=h^{\prime}(n)
$$

Easy proof mathematically
Two proofs based on financial interpretations:
Proof \#1: Infinitesimal trade after establishing equilibrium

$$
0=h(\epsilon+n)-h(n)-\epsilon p
$$

Proof \#2: Establishing the optimal position from nothing

$$
\Upsilon=h(n)-n p
$$

Tangent Relation

$$
f(n)=h^{\prime}(n)
$$

Easy proof mathematically
Two proofs based on financial interpretations:
Proof \#1: Infinitesimal trade after establishing equilibrium

$$
0=h(\epsilon+n)-h(n)-\epsilon p
$$

Proof \#2: Establishing the optimal position from nothing

$$
\Upsilon=h(n)-n p
$$

Concavity of $h(n) \Rightarrow$ downward slope of $f(n)$

Reserve Price

Why needed? Trading size not infinitely divisible.

Reserve Price

Why needed? Trading size not infinitely divisible.
Zero CEPL if trading m units at $r(m)$ per unit

$$
\begin{aligned}
r(m) & =\frac{1}{m}[h(n+m)-h(n)] \\
& =\frac{1}{\gamma m} \ln \frac{d+(1-d) \exp (-\gamma n)}{d+(1-d) \exp [-\gamma(n+m)]}
\end{aligned}
$$

Reserve Price

Why needed? Trading size not infinitely divisible.
Zero CEPL if trading m units at $r(m)$ per unit

$$
\begin{aligned}
r(m) & =\frac{1}{m}[h(n+m)-h(n)] \\
& =\frac{1}{\gamma m} \ln \frac{d+(1-d) \exp (-\gamma n)}{d+(1-d) \exp [-\gamma(n+m)]}
\end{aligned}
$$

Another CEPL formula: (easy financial interpretation)

$$
\Upsilon(m, p)=m[r(m)-p]
$$

Negative CEPL if $r^{b}(|m|)<p<r^{s}(|m|)$.

Reserve Price

Why needed? Trading size not infinitely divisible.
Zero CEPL if trading m units at $r(m)$ per unit

$$
\begin{aligned}
r(m) & =\frac{1}{m}[h(n+m)-h(n)] \\
& =\frac{1}{\gamma m} \ln \frac{d+(1-d) \exp (-\gamma n)}{d+(1-d) \exp [-\gamma(n+m)]}
\end{aligned}
$$

Another CEPL formula: (easy financial interpretation)

$$
\Upsilon(m, p)=m[r(m)-p]
$$

Negative CEPL if $r^{b}(|m|)<p<r^{s}(|m|)$.
Optimal CEPL formula:

$$
\Upsilon_{o}(m)=m[r(m)-q(m)] \geq 0
$$

$\Upsilon_{o}(m) \leftarrow$ quote price curve $q(m) \rightarrow \Upsilon_{o}(p-f(n))$

Schematic Drawing

sell arbitrage price a^{s}
sell quote price q^{s}
burrent fair value f
buy reserve price r^{b}
buy quote price q^{b}
buy arbitrage price a^{b}

Schematic Drawing

Schematic Drawing

sell arbitrage price a^{s}	
sell quote price q^{s}	sell reserve price r^{s}

Schematic Drawing

Quote and Reserve Price Curves

Basis for making rational trading decisions!

Mutually Beneficial Trading

Example: Same everything except initial position

	γn	c.f.v.	γm	p.t.f.v	$\gamma \uparrow$
Trader A	0.0	0.9500	0.25	0.9367	1.724×10^{-3}
Trader B	0.5	0.9202	-0.25	0.9367	1.994×10^{-3}

Economical Reason: Risk Transfer!

Mutually Beneficial Trading

Example: Same everything except initial position

	γn	c.f.v.	γm	p.t.f.v	$\gamma \uparrow$
Trader A	0.0	0.9500	0.25	0.9367	1.724×10^{-3}
Trader B	0.5	0.9202	-0.25	0.9367	1.994×10^{-3}

Economical Reason: Risk Transfer!

Local Equilibrium: There exists a local equilibrium for any two traders, i.e., one can find a trading size m_{*} such that

$$
f\left(n+m_{*}\right)=\tilde{f}\left(\tilde{n}-m_{*}\right)
$$

Mutually Beneficial Trading

Example: Same everything except initial position

	γn	c.f.v.	γm	p.t.f.v	$\gamma \gamma$
Trader A	0.0	0.9500	0.25	0.9367	1.724×10^{-3}
Trader B	0.5	0.9202	-0.25	0.9367	1.994×10^{-3}

Economical Reason: Risk Transfer!

Local Equilibrium: There exists a local equilibrium for any two traders, i.e., one can find a trading size m_{*} such that

$$
f\left(n+m_{*}\right)=\tilde{f}\left(\tilde{n}-m_{*}\right)
$$

Global Equilibrium: There exists a global equilibrium state for M traders.
May not reach there in a reasonable amount of time!

Summary

- derivatives should be priced in the context of portfolio optimization;

Summary

- derivatives should be priced in the context of portfolio optimization;
- derivatives pricing is preference and position dependent in incomplete markets, which is only meaningful from the personal perspective;

Summary

- derivatives should be priced in the context of portfolio optimization;
- derivatives pricing is preference and position dependent in incomplete markets, which is only meaningful from the personal perspective;
- the position dependent pricing offers a natural and systematic way to trade derivatives;

Summary

- derivatives should be priced in the context of portfolio optimization;
- derivatives pricing is preference and position dependent in incomplete markets, which is only meaningful from the personal perspective;
- the position dependent pricing offers a natural and systematic way to trade derivatives;
- derivatives trading in incomplete markets is mutually beneficial.

Further Information: www.atmif.com/qsdt

- Book Excerpt
- Derivatives Pricing and Trading in Incomplete Markets: A Tutorial on Concepts
- A Simple Jump to Default Model

