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Describe THE Idea

The Risky Bond Example



Incomplete Market Models

Model:
I Abstraction of reality
I Simulated option game
I No absolute correctness in finance

What are the logical consequences after establishing a belief?

Incomplete Markets:
Cannot eliminate risks associated with a derivative position.

Causes for Incompleteness:
Transaction costs, Stochastic vloatility, Jumps, Trading
contraints, etc.

Reality is much better represented by incomplete markets.
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Preference Question

Why is it necessary?

I The final wealth is a random variable.
I Different strategies (e.g. hedging schemes) produce

different probability density functions of the final wealth.
I Must find a way to rank different strategies.

Example:
Strategy A: a Gaussian with mean 1.0, standard deviation 1.0;
Strategy B: a Gaussian with mean 0.5, standard deviation 0.4.
Which one do you choose?



Utility Function

Standard approach is the expected utility theory

E [U] =

∫
U(w)ρ(w) dw

Change
∫

to
∑

if w is discrete.

U(w) is increasing and concave.
Affine transformation freedom of utility functions.

Use the negative exponential utility function

U(w) = −1
γ

exp(−γw)

Large risk aversion parameter γ means more risk averse.
γ and position size appear together as a product.

Reason: Memoryless, Solvable
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Fair Value

Fair value is the model output price of a derivative contract.

How to use your fair value f :

if p < f , you buy;
if p = f , you hold;
if p > f , you sell;

where p is the market price of the derivative.
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Review

The “Aha!” moment is coming up soon.

Four ingredients:

I Logic
I Incomplete market model
I Utility function
I Notion of fair value
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In a local equilibrium when p = f .

The equilibrium state is optimal!

Aha! The link: derivative pricing and portfolio optimization

What are the necessary conditions for optimality?

=⇒ Equations for computing the fair value
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New Pricing Principle

Local Equilibrium Principle > Arbitrage Principle

Local equilibrium pricing Arbitrage pricing
Complete delta hedging & BS eq. delta hedging⇒ BS eq.
Incomplete unique and correct a very wide range

Explicit link: Real measure −→ Pricing measure

Warning: No more freedom to yank a “risk neutral” measure
out of thin air, i.e. cannot model “risk neutral” measure directly.
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Model

I unit face value zero-coupon bond maturing at time T
I probability of default is d
I zero interest rate and other idealized assumptions
I current market price of the illiquid risky bond is p

This is an incomplete market model.

The risky bond is considered as a derivative here.

This simplest financial model goes a long way to explain all the
relevant concepts.

Goal: systematic trading decisions based on the model



Portfolio Optimization

The expected utility of the final wealth is

E [U] = (1− d) U(w0 + (1− p)n̂) + d U(w0 − pn̂)

Set the first order derivative w.r.t. n̂ to zero

(1− d)(1− p) U ′(w0 + (1− p)n̂) = dp U ′(w0 − pn̂)

The optimal position is (no w0)

γn̂ = ln
(1− d)(1− p)

dp
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Fair Value

Let n be your current position, your fair value of the risky bond is

f =
1− d

(1− d) + d exp(γn)

Inversion:
What market price makes the current position optimal?

Proof:
I if p < f , then n̂ > n,⇒ you buy;
I if p = f , then n̂ = n,⇒ you hold;
I if p > f , then n̂ < n,⇒ you sell.

f depends on the model parameter d—no surprise.
f also depends on your risk preference γ and current position n!

The fair value concept is only meaningful when you take the
personal rather than the market perspective.
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Source of Risk

Incomplete markets⇒ Unhedgable Risks

Q: What is the source of the risk?
A: Having a position (your position!).

Incompleteness + Risk Aversion⇒ Position Dependency

Current Literature:
Missing Position Dependency = Missing Risks

The position effect can offer natural explanations to many real
world phenomenons.
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How to Trade

Position dependency f (n)⇒ Natural trading strategy

Trading Rule: (do not require gut feelings)
Make post-trade fair value equal the market price

f (n + m) = p

This is the local equilibrium equation.

The solution is

m =
1
γ

ln
(1− d)(1− p)

dp
− n = n̂ − n

The optimal trading size m is simply the optimal position n̂
(post-trade) minus the current position n (pre-trade).

Incomplete Market Model + Risk Aversion = How to Trade
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Dimensionless Trading Size

d = 0.05, γn = 0.5

Define a curve q(m) := f (n + m)

q(m) =
1− d

(1− d) + d exp[γ(n + m)]

p < f (n)⇒ m > 0 (demand)
p > f (n)⇒ m < 0 (supply)

large |p − f (n)| ⇒ large |m|

downward sloping guarantees
equilibrium state
automatic inventory control
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Generating Quotes

The personal supply-demand curve is also called quote price
curve.

Let mb > 0 (bid) and ma < 0 (ask)

Making a market: Posting four numbers

{q(mb), |mb|}—{q(ma), |ma|}, e.g., {0.875, 0.5}—{0.950, 0.5}

{bid price, bid size}—{ask price, ask size}

Natural market maker!
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Arbitrage Price

Definition for buy and sell arbitrage prices (Why?)

ab := lim
m→+∞

f (n + m)

as := lim
m→−∞

f (n + m)

ab and as are position and preference independent.

Arbitrage prices are not useful in incomplete markets because
(ab, as) form a wide range.

For the risky bond, ab = 0 and as = 1.
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Certainty Equivalent Profit and Loss (CEPL)
How to measure a trade?

I Realized P&L: a random ex-post quantity
I Gain in expected utility: no natural scale
I CEPL: convert expected utility gain into wealth

Trading m units at p per bond:

E1[U] = (1− d) U(w0 − pm + n + m) + d U(w0 − pm)

Taking the lump sum Υ in lieu of the trade:

E2[U] = (1− d) U(w0 + Υ + n) + d U(w0 + Υ)

CEPL definition: Indifferent⇒ E1[U] = E2[U]

Υ(m, p) = −1
γ

ln
d + (1− d) exp[−γ(m + n)]

d + (1− d) exp(−γn)
−mp
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CEPL against Trading Price
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CEPL against Trading Size
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Portfolio Indifference Price

Indifferent between lump sum h and position n

U(w0 + h) = (1− d) U(w0 + n) + d U(w0)

Explicit formula

h(n) = −1
γ

ln [d + (1− d) exp(−γn)]

Note n = 0⇒ h = 0.

The CEPL formula can be rewritten as

Υ(m, p) = h(m + n)− h(n)−mp

Can be deduced from the notion of indifference.
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Tangent Relation

f (n) = h′(n)

Easy proof mathematically

Two proofs based on financial interpretations:

Proof #1: Infinitesimal trade after establishing equilibrium

0 = h(ε + n)− h(n)− εp

Proof #2: Establishing the optimal position from nothing

Υ = h(n)− np

Concavity of h(n)⇒ downward slope of f (n)
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Reserve Price
Why needed? Trading size not infinitely divisible.

Zero CEPL if trading m units at r(m) per unit

r(m) =
1
m

[h(n + m)− h(n)]

=
1

γm
ln

d + (1− d) exp(−γn)

d + (1− d) exp[−γ(n + m)]

Another CEPL formula: (easy financial interpretation)

Υ(m, p) = m [r(m)− p]

Negative CEPL if rb(|m|) < p < r s(|m|).

Optimal CEPL formula:

Υo(m) = m [r(m)− q(m)] ≥ 0

Υo(m)← quote price curve q(m)→ Υo(p − f (n))



Reserve Price
Why needed? Trading size not infinitely divisible.
Zero CEPL if trading m units at r(m) per unit

r(m) =
1
m

[h(n + m)− h(n)]

=
1

γm
ln

d + (1− d) exp(−γn)

d + (1− d) exp[−γ(n + m)]

Another CEPL formula: (easy financial interpretation)

Υ(m, p) = m [r(m)− p]

Negative CEPL if rb(|m|) < p < r s(|m|).

Optimal CEPL formula:

Υo(m) = m [r(m)− q(m)] ≥ 0

Υo(m)← quote price curve q(m)→ Υo(p − f (n))



Reserve Price
Why needed? Trading size not infinitely divisible.
Zero CEPL if trading m units at r(m) per unit

r(m) =
1
m

[h(n + m)− h(n)]

=
1

γm
ln

d + (1− d) exp(−γn)

d + (1− d) exp[−γ(n + m)]

Another CEPL formula: (easy financial interpretation)

Υ(m, p) = m [r(m)− p]

Negative CEPL if rb(|m|) < p < r s(|m|).

Optimal CEPL formula:

Υo(m) = m [r(m)− q(m)] ≥ 0

Υo(m)← quote price curve q(m)→ Υo(p − f (n))



Reserve Price
Why needed? Trading size not infinitely divisible.
Zero CEPL if trading m units at r(m) per unit

r(m) =
1
m

[h(n + m)− h(n)]

=
1

γm
ln

d + (1− d) exp(−γn)

d + (1− d) exp[−γ(n + m)]

Another CEPL formula: (easy financial interpretation)

Υ(m, p) = m [r(m)− p]

Negative CEPL if rb(|m|) < p < r s(|m|).

Optimal CEPL formula:

Υo(m) = m [r(m)− q(m)] ≥ 0

Υo(m)← quote price curve q(m)→ Υo(p − f (n))



Schematic Drawing

6

�

�

�

�

�

�

�

sell arbitrage price as

sell quote price qs

sell reserve price r s

current fair value f

buy reserve price rb

buy quote price qb

buy arbitrage price ab

I Meaning w.r.t. trading size

I Intuitive ranking
I q(m) and r(m) asymmetric

w.r.t. current fair value
I r(m) ≈ 1

2 [q(m) + q(0)]



Schematic Drawing

6

�

�

�

�

�

�

�

sell arbitrage price as

sell quote price qs

sell reserve price r s

current fair value f

buy reserve price rb

buy quote price qb

buy arbitrage price ab

I Meaning w.r.t. trading size
I Intuitive ranking

I q(m) and r(m) asymmetric
w.r.t. current fair value

I r(m) ≈ 1
2 [q(m) + q(0)]



Schematic Drawing

6

�

�

�

�

�

�

�

sell arbitrage price as

sell quote price qs

sell reserve price r s

current fair value f

buy reserve price rb

buy quote price qb

buy arbitrage price ab

I Meaning w.r.t. trading size
I Intuitive ranking
I q(m) and r(m) asymmetric

w.r.t. current fair value

I r(m) ≈ 1
2 [q(m) + q(0)]



Schematic Drawing

6

�

�

�

�

�

�

�

sell arbitrage price as

sell quote price qs

sell reserve price r s

current fair value f

buy reserve price rb

buy quote price qb

buy arbitrage price ab

I Meaning w.r.t. trading size
I Intuitive ranking
I q(m) and r(m) asymmetric

w.r.t. current fair value
I r(m) ≈ 1

2 [q(m) + q(0)]



Quote and Reserve Price Curves
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Basis for making rational trading decisions!



Mutually Beneficial Trading

Example: Same everything except initial position
γn c.f.v. γm p.t.f.v γΥ

Trader A 0.0 0.9500 0.25 0.9367 1.724× 10−3

Trader B 0.5 0.9202 −0.25 0.9367 1.994× 10−3

Economical Reason: Risk Transfer!

Local Equilibrium: There exists a local equilibrium for any two
traders, i.e., one can find a trading size m∗ such that

f (n + m∗) = f̃ (ñ −m∗)

Global Equilibrium: There exists a global equilibrium state for M
traders.
May not reach there in a reasonable amount of time!
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Summary

I derivatives should be priced in the context of portfolio
optimization;

I derivatives pricing is preference and position dependent in
incomplete markets, which is only meaningful from the
personal perspective;

I the position dependent pricing offers a natural and
systematic way to trade derivatives;

I derivatives trading in incomplete markets is mutually
beneficial.
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Further Information: www.atmif.com/qsdt

I Book Excerpt
I Derivatives Pricing and Trading in Incomplete Markets:

A Tutorial on Concepts
I A Simple Jump to Default Model
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