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Abstract

A simple jump to default model is used to illustrate preference and position dependent derivatives
pricing in incomplete markets, with the emphasis on how to make systematic trading decisions based on
the model.
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I Introduction

In this pedagogical article, I study derivatives pricing and trading under a simple jump to default model,
in which the stock price follows a geometric Brownian motion with constant drift and volatility. During
any time interval dt, the stock price can jump to zero (default) with probability ζdt. To express it
mathematically, the stock movement is governed by a jump diffusion model

ds = s[(ν + ζ) dt + σ dB − dQ] (1)

where dB is the standard Brownian motion, and dQ is the Possion jump term that has the probability ζdt

of being one and (1− ζdt) of being zero. Note that the three model parameters ν, σ and ζ are regarded as
known constants.

Imagine you are playing a trading game with four types of instruments in it: (i) the stock, (ii) risky
bonds, (iii) vanilla European call options on the stock, and (iv) convertible bonds. This game offers a little
bit of everything, and the game is over once the default occurs. The stock can be traded continuously;
whereas the other types of instruments are considered as derivatives that are not trading continuously.
This setting is a good approximation to the situation where the bid-ask spread on the stock is always
nearly zero (liquid), and the ones on derivatives are usually large (illiquid). The game shows the current
price p of a derivative, it then asks you for your trading decision, whether to buy or sell, and how many.
Note after the initial derivative trade, the game does not guarantee that you will be able to trade the same
instrument again before its maturity. Since there are four types of instruments in the game, there are quite
a few combinations of trading them together, some of which will be discussed later in this article.

Jump to default models are not new, it started with the work of Samuelson and Merton (see Chapter 9
of [11]), other variants of the model can be found in papers [1, 4, 5, 8, 13] and references therein. But none
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of these papers discusses the trading issue addressed in this article. Most jump to default models in the
literature are more complicated than the one presented here. Instead of being realistic, I want the model
to be as simple as possible for pedagogical reasons, but still has the following two features: (i) it has a
continuous trading component, so some sort of dynamic hedging is allowed; (ii) it has to be an incomplete
market model, otherwise there is no trading game to speak of. In the spirit of making matters as simple
as possible, both the interest rate and dividend rate are set to zero, as the case of deterministic interest
and dividend rates causes little technical difficulty and does not change any of the qualitative results
presented below. Furthermore, other idealized assumptions also apply to this game, such as allowing short
selling and leverage (borrowing), and no transaction costs. This simple jump to default model, which is an
one-parameter extension of the classical Black-Scholes (BS) model,1 offers plenty insights into derivatives
pricing and trading in incomplete markets.

The material in this article is not self-contained. This pedagogical article can be regarded as a sequel
to [15], so you must read [15] to understand all the basic concepts involved before proceeding. Glancing
over first part of [16] will also be helpful, but not required to understand this article.

II Pure Stock Investment Problem

In this section, the only instrument you are allowed to trade is the stock. You may wonder what this
has anything to do with derivatives trading, which is the focus of this article. The answer, which will be
shown later, is that in incomplete markets, derivatives pricing depends on the solution of the pure stock
investment problem.

The pure stock investment problem is about portfolio optimization in continuous time, i.e., finding a
strategy that maximizes the expected utility of the terminal wealth. In this article, I use the exponential
utility function

U(w) = −1
γ

exp(−γw) (2)

where γ > 0 is the risk aversion parameter. One approach to find the optimal strategy is to apply the
standard stochastic control theory (stochastic dynamic programming), i.e., the HJB equation; much like in
calculus where you set the first order derivative of a function to zero to find a maximum. If you know the
basics of the stochastic control theory, then what comes next is not new. However, if you are completely
new to this subject, then hold your nose and go through the next few paragraphs, because you do not need
to have a thorough knowledge of the topic to do computations.

The method used to solve a portfolio optimization problem is relevant to derivatives pricing, because in
the new paradigm to be presented shortly, derivatives are priced in the context of portfolio optimization.
The simple pure stock investment problem offers a glimpse of the procedure involved in deriving the option
pricing equations.

Assume the amount of money invested in the stock is π, which is a variable you can control at any
moment by buying or selling the stock, then the number of shares n0 in the portfolio is simply π/s. The
change of wealth dw during a small time interval dt is given by the following budget equation

dw = n0 ds = π
ds

s
= π[(ν + ζ) dt + σ dB − dQ] (3)

1The other one-parameter incomplete market extension of the BS model that I know of is to include proportional transaction

costs [6, 14], which turns out to be a harder problem than the simple jump to default model here [16].
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Let the value function be J(t, w), which is the maximized expected utility at the current time t based on
the current wealth w,2 then the infinitesimal change of J during a small time interval is

d J(t, w) = Jt dt + Jw dw +
1
2
Jww(dw)2 + [J(t, w − π)− J(t, w)]dQ (4)

where subscripts denote partial derivatives. The necessary condition for optimality is the HJB equation
supπ E[dJ ] = 0. After substituting the expression for dw, it becomes

sup
π
{Jt(t, w) + π(ν + ζ)Jw(t, w) +

1
2
π2σ2Jww(t, w) + ζ[J(t, w − π)− J(t, w)]} = 0 (5)

The symbol supπ means that the derivative of the left hand side with respect to π is zero, which produces

(ν + ζ)Jw(t, w) + π̄σ2Jww(t, w)− ζJw(t, w − π̄) = 0 (6)

where π̄ is the optimal investment amount.
One advantage of using the exponential utility function is that the wealth variable can be separated

out, i.e., J(t, w) is of the form

J(t, w) = −1
γ

exp[−γw − γφ̄(t)] (7)

Substituting this expression for J into (6) leads to3

(ν + ζ)− γπ̄σ2 − ζ exp(γπ̄) = 0 (8)

For a given ν, (8) is a transcendental equation for π̄, which always has a unique root, as the left hand side
is a monotone decreasing function in π̄ that goes from +∞ to −∞. Therefore there is a one-to-one relation
between the drift parameter ν and the optimal investment amount π̄. In reality, the drift coefficient ν is
very difficult to estimate accurately. Since ν is unknowable in practice, it is your belief that really matters.
Taking a directional bet π̄ implies having a particular view on ν. The practical advantage of viewing ν

as a function of π̄ (see Fig. 1) through (8) is that π̄ is directly under your control. It is clear from the
equation as well as the figure that making a large bullish bet requires an exponentially large positive drift
due to the default risk. Notice that directional neutral (π̄ = 0) means ν = 0, and vice versa.

Substituting expression (7) into (5) gives the equation for φ̄

φ̄t + π̄(ν + ζ)− 1
2
γπ̄2σ2 − ζ

γ
[exp(γπ̄)− 1] = 0 (9)

The final condition is φ̄(T ) = 0, where T is the investment horizon. It is trivial to solve this equation with
the solution being

φ̄(t) = {π̄(ν + ζ)− 1
2
γπ̄2σ2 − ζ

γ
[exp(γπ̄)− 1]}(T − t) (10)

where ν and π̄ are related by (8). It is not difficult to show that φ̄ is always positive. The financial
interpretation for φ̄ is that it is the CEPL of playing the stock trading game, i.e., you are indifferent
between the choices of applying the optimal stock trading strategy or receiving a lump sum φ̄ (but forfeit
trading the stock).

To summarize, at any given time, the optimal strategy for the pure stock investment problem is to have
n̄0 := π̄/s shares in the portfolio. The CEPL of this optimal strategy is given by (10).

2Actually J should also be a function of the stock price s in general. It turns out in the end that this problem is s

independent, so the s variable is left out from the onset.
3A similar equation for a much general model under the power utility function is given in [9].
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Figure 1: The horizontal axis is the dimensionless directional bet amount γπ̄; the vertical axis is the
dimensionless drift ν/σ2. The dimensionless default intensity here is ζ/σ2 = 0.1.

III SJD-DOPE

In this section, I present the derivative pricing equations under the simple jump to default model (1). Let
~n be a vector representing a portfolio of European derivatives, where the component ni (i = 1, 2, · · · , N) is
the position of the ith instrument with maturity date Ti and payoff function f i(Ti, s). Suppose currently
you do not have any derivative position, what is the most amount you want to pay to take over the portfolio
~n?

This amount h (you are being paid if h < 0) is called the portfolio indifference price for position ~n, as
you are indifferent between the lump sum h and position ~n. For the simple jump to default model, h(t, s)
satisfies the following nonlinear PDE, whose origin will be discussed later in this section,

ht +
1
2
σ2s2hss −

1
2
γσ2s2(nh

0 + hs)2

+ [σ2 + ζ exp(γπ̄)]s(nh
0 + hs) +

N∑
i=1

nif
i(Ti, s)δ(t− Ti) = 0 (11)

where γ is the risk aversion parameter and the optimal hedging shares of the stock nh
0 can be computed

from solving the transcendental equation

γs(nh
0 + hs)σ2 + ζ exp(γπ̄){exp[γs(nh

0 + hs)− γ(∆h + shs)]− 1} = 0 (12)

The quantity ∆h in (12) is simply h(t, 0)−h(t, s). In this trading game, all four types of instruments, i.e.,
the stock, risky bonds, vanilla European calls and convertible bonds, become worthless when the default
occurs, so h(t, 0) = 0, which means ∆h = −h. It is easy to show that for any given h(t, s), equation (12)
for nh

0 always has a unique root. With all terms in (11) known, h can be propagated backward, at least
numerically, from its final condition h(T, s) = 0, where T is the investment horizon that is larger than
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any Ti. Note that whenever a maturity is crossed, h jumps by the amount of the payoff function times its
position size.

Equation (12) says that the number of optimal dynamic hedging shares nh
0 depends on h alone, which

is meaningful only at the portfolio level. Since h satisfies a nonlinear PDE, hedging the whole portfolio is
not a linear sum of hedging each instrument in it. Of course, when ~n = ~0, h is zero, so is nh

0 . Note that
the total number of shares of the stock in the portfolio is n̂0 = n̄0 + nh

0 , where n̄0 := π̄/s is the number of
shares corresponding to the optimal directional bet.

The fair value of a derivative is defined to be a model output such that you are a buyer/seller if the
market price is lower/higher than it, and you stay put when the market price equals your fair value. Once
h and nh

0 are solved, the fair value f i(t, s) of the ith instrument satisfies the linear PDE4

f i
t +

1
2
σ2s2f i

ss + [ζ exp(γπ̄)− γs(nh
0 + hs)σ2](∆f i + sf i

s) = 0 (13)

with the final condition at Ti being the known payoff function f i(Ti, s). Once again ∆f := f(t, 0)−f(t, s) =
−f(t, s), because all derivatives in the game’s trading universe become worthless after the default.

Equation (13) says that the fair value is in general position dependent, through the position effect term
(nh

0 +hs), which implies that the model market is incomplete. Whenever necessary, I will make the position
dependency notationally explicit by writing h and f i as h(t, s|~n) and f i(t, s|~n). In the following two special
situations the position effect term (nh

0 + hs) is identically zero: (i) when ζ = 0 (cf. (12)), as expected the
fair value equation (13) reduces to the well-known BS equation that is position independent; (ii) when the
derivative position is empty, i.e., ~n = ~0 (implies h = 0), again (13) reduces to the well-known BS equation,
but with an upward adjusted interest rate, which is a known result of Merton (see Chapter 9 of [11]).

The pair of PDEs (11) and (13) is called SJD-DOPE, which is the simple jump to default model version
of the dynamic option pricing equations. The SJD-DOPE will be solved numerically later on, with the
emphasis on studying the position dependent effect. The position dependency of the SJD-DOPE offers a
natural and systematic way to trade derivatives [15].

It is clear that the SJD-DOPE depends on the stock drift parameter ν through the optimal directional
bet amount π̄, which proves the earlier assertion that the solution of the pure stock investment problem
affects derivatives valuation. This contrasts the BS complete market models (ζ = 0) where ν has no bearing
on option pricing. In this simple jump to default model, the influence of the drift comes into the equations
through the modified default intensity ζ̄ := ζ exp(γπ̄). Therefore for the purpose of pricing derivatives, the
three-parameter model (ν, σ, ζ) becomes effectively a two-parameter one (σ, ζ̄). In other words, studying
the effect of the optimal directional bet π̄ is the same as studying the effect of default intensity ζ, with a
bullish bet increasing ζ̄ and a bearish one decreasing it. Without loss of generality, I will only consider the
directional neutral case π̄ = 0 in the rest of this article.

Ideas Behind the SJD-DOPE Derivation

I now address the question of where the SJD-DOPE comes from. The answer is that it comes from solving
a portfolio optimization problem with a twist. The mathematical tool involved is the stochastic control
theory, a glimpse of which has been provided in Section II. The details of the SJD-DOPE derivation are

4A similar PDE is given in Section 14.5.3 of [12], the major difference is that I derived an explicit expression for an

unspecified function g(t, s) there.
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presented in Appendix, as it follows a well-defined procedure, which is somewhat tedious. However, the
ideas behind the derivation are explained here.

Suppose in addition to the stock price, the market price of a derivative instrument is also being ex-
ogenously specified as a process, what will you do? Note this is no longer a derivative pricing problem, it
becomes a portfolio optimization problem. In complete markets, the solution is trivial: you buy infinite
amount if the derivative market price is lower than its BS value, conversely you sell infinite amount when
it is higher. When the two numbers equal, it does not matter what you do, as long as you use the delta
hedging scheme to replicate the derivative payoff function. In incomplete markets, however, it is possible
to specify both price processes (the underlying asset and one of its derivatives) without causing arbitrages.
In general, solving such a portfolio optimization problem using the stochastic control theory is not a trivial
exercise [3, 10].

In a standard portfolio optimization problem, the market price process is the input, and the optimal
trading strategy is the output. The twist here, and it is an important one, is to turn this around and ask
the question of what the market price process should be in order for a given trading strategy to be optimal.
I now show you why this twist offers a natural solution to the derivatives pricing problem.

Recall that derivatives are regarded as illiquid assets in the trading universe, i.e., they cannot be traded
continuously. Since the game may not offer you another chance to trade the same instrument, the only
trading strategy available to you, whenever the game gives you a chance to trade a derivative, is to change
your current position and expect to hold the position to maturity. The key insight is that your position
remains constant after the initial trade. Because the derivative is illiquid, you really cannot observe its
market price process (think of wide bid-ask spread); however, you are free to imagine a fictitious market
price process. Now the question becomes under what fictitious price process will a constant position
strategy be optimal.

At this point, apply the standard machinery of the stochastic control theory, which says that the
necessary condition of optimality is the HJB equation. Now go through some algebraic steps, the final
outcome is that the fictitious market price must satisfy equation (13). When the current observed market
price p agrees with the solution of (13), then you have found a fictitious market price process that starts
with p and ends with f i(Ti, s) under which the position ~n remains optimal.5 Simply put, your current fair
value process is the necessary condition under which your current portfolio remains optimal.

When the market price and your current fair value do not agree, then the necessary condition of
optimality is violated. The only logical conclusion is that your current position is not optimal. Thus you
need to adjust your position until the post-trade based fair value agrees with the market price. By pricing
derivatives in the context of portfolio optimization, you have obtained a natural and systematic way of
trading derivatives. This new method of deriving the option pricing equation by embedding it in a portfolio
optimization problem is called dynamic derivation. It recovers the well-known BS equation (cf. (13) with
ζ = 0) in a complete market (see also Section 3.2 of [16]).

IV Trading Risky Bonds

Risky bonds of a single maturity are studied in this section. There are two situations to cover: (i) dynamic
hedging using the stock is allowed, and (ii) naked bond position without hedging. The reason that the

5Technically speaking, this is only the necessary condition for optimality, you need to go through the verification step to

ensure that sufficient conditions are satisfied as well.
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stock can be used to hedge risky bonds is that they share a common risk factor—default.
Let me consider the hedging situation (i) first. Since the payoff function of the unit face value bond

is s independent, it is not difficult to see that the s dependency in (11) and (12) drops out because the
optimal stock hedging amount πh := nh

0s is also independent of s. Thus PDE (11) becomes an ODE for
h(t)

γht −
1
2
σ2(γπh)2 + (σ2 + ζ)(γπh) = 0 (14)

where the dimensionless optimal stock hedging amount γπh satisfies the transcendental equation

σ2(γπh) + ζ[exp(γh + γπh)− 1] = 0 (15)

The final condition for h is

h(T ) = n (16)

where I have assumed that there are n units of the T maturity risky bond in the portfolio. Note that the
impulse delta function in (11) has been converted into the final condition (16). The fair value PDE (13)
becomes the ODE

ft + [(γπh)σ2 − ζ]f = 0 (17)

with the final condition being f(T ) = 1. This set of ODEs does not seem to have a simple analytical
solution, but numerical computation is easy to carry out.

In the no hedging situation (ii), it is easy to write down explicit expressions for the portfolio indifference
price h and the fair value f (see [15]):

γh(t) = − ln[1− exp(−ζt̄) + exp(−ζt̄− γn)] (18)

f(t) =
exp(−ζt̄− γn)

1− exp(−ζt̄) + exp(−ζt̄− γn)
(19)

where t̄ := T − t is the time to maturity. Note that the default probability for the risky bond during the
time interval [t, T ] is simply 1 − exp(−ζt̄). Let me point out that the two expressions (18) and (19) do
not respectively satisfy the ODEs (14) and (17), because the ODEs are derived under the assumption that
dynamic stock hedging is allowed.

I first study the effect of the bond maturity. The fair value of a risky bond can be converted into an
implied spread over the riskless rate; since the riskless rate is zero here, the implied spread is the same
as the implied yield on the bond, which is given by yi := − ln f/t̄. It is easy to check that when n = 0,
the dimensionless implied spread yi/ζ is one for both cases (hedging and nonhedging). In Fig. 2, the
dimensionless implied spread yi/ζ is plotted against the dimensionless time to maturity ζt̄ for two different
dimensionless position sizes γn and three different dimensionless default intensities ζ/σ2. Notice that the
dotted curves within each row are the same, as it is easy to verify from (19) that the implied spread is
independent of ζ/σ2. It is clear from the figure that the hedging and nonhedging scenarios exhibit the
same qualitative behaviors. The spread shrinks under a short position, because the fair value of the risky
bond is raised relative to the no position case; similarly, the spread widens under a long position, because
the fair value is lowered. Under both long and short positions, the dimensionless spread approaches one
as the time to maturity lengthens. For a given short position, the spread for the nonhedging scenario
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Figure 2: The horizontal axes are the dimensionless time to maturity ζt̄; the vertical axes are the dimen-
sionless implied spread yi/ζ. The upper row is for γn = −0.5; the bottom row is for γn = 0.5. The left,
middle and right columns are for ζ/σ2 = 0.05, 0.1, and 0.15, respectively. The solid curves are for the
hedging scenario, whereas the dotted ones are for the nonhedging scenario.

is smaller, because it demands a higher bond price to short the same amount as the hedging scenario;
similar reasoning shows that the spread for the nonhedging scenario is larger under a given long position.
This can also be seen from the optimal CEPL plot Fig. 3, where the dotted curves always lie about the
corresponding solid ones because the nonhedging scenario demands a better price concession to establish
the same position.

Under the hedging scenario, the optimal hedging ratio −πh/(nf) is of great interest, where πh := nh
0s is

the amount money invested in the stock and nf is the amount invested in the risky bond. The normalized
optimal hedging ratio is plotted in Fig. 4. It is obvious that the optimal hedging ratio defined with a minus
sign should always be positive, as you short the stock to hedge a long bond position, and vice versa. One
striking feature of Fig. 4 is that the optimal hedging ratio is almost independent of the bond maturity,
which means you need more shares to hedge a short maturity bond, as the bond fair value is a decreasing
function of time to maturity. The optimal hedging ratio itself will be sensitive to the default intensity,
but after normalizing it with the dimensionless default intensity ζ/σ2, it becomes a slow varying function
of ζ/σ2 as changing ζ/σ2 by a factor of three (from left to right columns) does not alter the normalized
optimal hedging ratio by that much. It is also clear from the figure that for the same absolute size, the
long bond position (bottom row) requires a higher hedging ratio.

I now investigate the effect of position size, which is needed to determine the optimal trading size. The
most important things to know with respect to making rational trading decisions on the risky bond are its
quote and reserve price curves, which are plotted in the top row of Fig. 5. Notice that I have assumed that
the pre-trade portfolio has no derivatives in it, otherwise the current fair value for hedging and nonhedging
cases will not be the same. The formulas of the quote and reserve price curves are given by q(m) = f(∗|m)
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Figure 3: Similar to Fig. 2, except that the vertical axes are the dimensionless optimal CEPL γh(∗|n) −
γnf(∗|n).
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Figure 4: Similar to Fig. 2, except that the vertical axes are the normalized optimal hedging ratio
−(σ2nh

0s)/(ζnf).
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Figure 5: The horizontal axes are the dimensionless trading size; the vertical axes of the top row are the
trading price; the vertical axes of the middle row are the corresponding dimensionless implied spread yi/ζ;
the vertical axes of the bottom row are the normalized optimal hedging ratio −(σ2nh

0s)/(ζnf). The left,
middle and right columns are for ζ/σ2 = 0.05, 0.1, and 0.15, respectively. The solid curves are for the
hedging scenario, whereas the dotted ones are for the nonhedging scenario.

and r(m) = h(∗|m)/m, respectively [15]. As expected, the quote and reserve price curves of the nonhedging
scenario have larger negative slopes. The middle row is similar to the top row, except that both the quote
and reserve prices have been converted to their respective implied spreads. The curves in the middle row
have positive slopes, because a higher price means a lower spread.

For all panels in Fig. 5, the dimensionless time to maturity ζt̄ is fixed at 0.2. For a given default
intensity ζ, the three different columns correspond to three different volatilities σ, with left column having
the largest σ (smallest ζ/σ2). Note that the dotted curves of different columns within each row are the
same, as the nonhedging case does not depend on σ. Because the deviations of the solid curves from the
corresponding dotted ones are smallest in the left column, it is easy to conclude that you hedge less when
σ is large.

The normalized optimal hedging ratio is plotted in the bottom row of Fig. 5. It is not too sensitive to
σ, which means that the optimal hedging ratio −(nh

0s)/(nf) is almost inversely proportional to σ2 under a
given ζ. Thus a larger σ means smaller hedging ratio (less hedging), which is consistent with the previous
observation. The optimal hedging ratio is an increasing function of the trading size, or position size here,
with a large short position having the lowest ratio and a large long position have a highest ratio, which is
also consistent with the result of Fig. 4.

The optimal CEPL curves corresponding to the middle column of Fig. 5 (ζ/σ2 = 0.1) is plotted in
Fig. 6. Because the quote price curve q(m) is a monotone decreasing function, there is a one-to-one
mapping between the trading price and the optimal trading size, which maps the horizontal axes of the
two panels in the figure to each other. The left half of the left panel corresponds to the right half of the

10



 0

 0.02

 0.04

 0.06

 0.08

-1 -0.5  0  0.5  1

D
im

e
n
s
io

n
le

s
s
 O

p
ti
m

a
l 
C

E
P

L

Trading Size

 0

 0.02

 0.04

 0.06

 0.08

-0.12 -0.06  0  0.06  0.12

D
im

e
n
s
io

n
le

s
s
 O

p
ti
m

a
l 
C

E
P

L
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Figure 6: The horizontal axis for the left panel is the dimensionless trading size γm, the one for the right
panel is the trading edge p − q(0), where p is the trading price and q(0) is the current fair value; the
vertical axis is the dimensionless optimal CEPL γh(∗|m)− γnf(∗|m). The solid curves are for the hedging
scenario, whereas the dotted ones are for the nonhedging scenario.

right panel, because by convention selling (m < 0) is associated with positive trading edges. As mentioned
before, for a given trading size (left panel), the CEPL for the nonhedging scenario is higher because it
demands a larger price concession. However, for a given trading price, or trading edge, the nonhedging
case has a lower CEPL because its corresponding optimal trading size is smaller. Another intuitive way to
understand this is that you would choose not to hedge if the hedging CEPL were lower than that of the
nonhedging one.

V Trading European Calls

The only instruments you can trade in this section are European calls, and the underlying stock that is
used for dynamic hedging. The emphasis of the study is on how fair values are affected by the underlying
position.

I first investigate how the fair value of the at-the-money call (relative strike k/s = 1, dimensionless time
to maturity σ2t̄ = 0.1) changes with respect to its position in the portfolio. This information is contained in
the quote price curve of the option in Fig. 7, assuming the pre-trade position is an empty portfolio. Recall
that the sell arbitrage price is defined to be a price beyond which you want to sell unlimited quantities, and
the buy arbitrage price is the one below which you want to buy unlimited quantities. It can be inferred
from Fig. 7 that f(∗|m)/s approaches one as m → −∞, which means that the sell arbitrage price for the
option is simply s. Obviously if the call were selling at or above s, you could sell it and buy the stock with
one-to-one ratio to arbitrage. It is clear from the same figure that the fair value approaches its BS value
(without default) in the m → +∞ limit, which means that the buy arbitrage price for the option is the BS
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Figure 7: The horizontal axis is the dimensionless trading size γm; the vertical axis is the relative trading
price p/s. The solid curve is for quote price, and the dashed one is for reserve price. The dotted horizontal
line is the position independent BS value with no default. The inset is a blow-up of the center region.

value, not zero! Let us look into what happens if you buy the call at its BS price and use the regular delta
hedging scheme to hedge the position. If the default does not occur during the lifetime of the option, then
you break even. However, if the default does occur, you gain sfs with fs being the shares shorted, but lose
f . Since f is a convex function in s, sfs − f > 0.6 Thus you cannot lose whether default occurs or not.
Indeed you would want to buy an infinite amount if the call were to trade at or below its BS value. Note
that the arbitrage argument does not work if the stock volatility is stochastic.

Any European call value can be converted into an implied volatility by the BS formula (no default).
Since your personal fair value of a given call is position dependent, so is your implied volatility surface
σi(k, t̄|~n), where k is the strike and t̄ is the time to maturity. In the rest of this section, the main focus
will be on how the implied volatility surface changes with respect to the underlying option position ~n.

Let us first consider what the implied volatility surface looks like when there is no position in the
portfolio (zero-option-portfolio). Three different time to maturity slices of σi(k, t̄|~0) for three different
default intensity are plotted in Fig. 8. There are no surprises from this figure. The implied volatility
surface is negatively skew due to the downside jump risk. Furthermore, the skew is stronger when ζ is
larger, which is also intuitive.

I now discuss how the implied volatility surface changes when there are options in the portfolio. The
natural quantity to focus on is the relative percentage change of the implied volatility with respect to that
of the zero-option-portfolio

100
σi(∗|~n)− σi(∗|~0)

σi(∗|~0)
(20)

6Merton (see Chapter 8 of [11]) proved that when the stock return does not depend on the stock level, which is the case

here, call option values are convex functions of the stock price.
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Figure 8: The horizontal axis is the relative strike price k/s; the vertical axis is the relative implied volatility
σi/σ. The top, middle and bottom rows are for σ2t̄ = 0.05, 0.1 and 0.15, respectively. The left, middle
and right columns are for ζ/σ2 = 0.05, 0.1 and 0.15, respectively.

I will investigate three cases next where ~n represents, respectively, (i) an at-the-money call, (ii) a vertical call
spread (long the lower strike and short the upper strike with 1 : 1 ratio) with relative strikes “0.75 : 1.25”,
and (iii) a butterfly (long the wing strikes each once, and short the middle strike twice) with relative strikes
“0.75 : 1.0 : 1.25”, with the dimensionless time to maturity being fixed at σ2t̄ = 0.1 for all three cases.

The first case is to study the impact of the at-the-money call option, which is plotted in Fig. 9. It is
clear that the long position suppresses implied volatilities, whereas the short position elevates them. This
result will be proved analytically later in Section VI.

The second case is the vertical call spread position, which is plotted in Fig. 10. A long vertical call
spread position (long the lower strike call and short the upper strike call) depresses the implied volatility
of the lower strike due to the long position, whereas the implied volatility of the upper strike is elevated
due to the short position, so the slope is positive. For similar reasons, negative slope curves are associated
with the short position. Despite positive slopes for the curves in Fig. 10 corresponding to the long vertical
call spread position, the overall skew for σi remains negative. Because the relative change of the implied
volatility in this example is not large enough to overcome the negative skew of the zero-option-position; it
simply lessens the original negative skew.

The third case is the butterfly position, which is plotted in Fig. 11. The long position has negative
gamma in the middle, so the curves look like those of a short the at-the-money call position Fig. 9; similar
analogy exists for the short butterfly position. The magnitude of the change here is much smaller because
a butterfly position is balanced comparing to an outright call position. Notice that in the middle row of
Fig. 11, which has the same maturity as the underlying position, the curves in the middle (near at-the-
money) are concave and convex for the long and short positions, respectively. The concaveness associated
with the long butterfly position is probably due to the largest elevation of the implied volatility in the
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Figure 9: Relative percentage changes of implied volatilities from the ones in Fig. 8 for the at-the-money
call position with dimensionless size |γns| = 2. The solid curve is for the short position and the dashed
one is for the long position.
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Figure 10: Similar to Fig. 9, except that the underlying position is the “0.75 : 1.25” vertical call spread.
The solid curve is for the short position γns = −2 and the dashed one is for the long position γns = 2.
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Figure 11: Similar to Fig. 9, except that the underlying position is the “0.75 : 1.0 : 1.25” butterfly. The
solid curve is for the short position γns = −2 and the dashed one is for the long position γns = 2.

middle from the short call of the middle strike relative to those that close to the wings. Similar logic works
for the convex shape.

The three figures, Fig. 9, Fig. 10 and Fig. 11, exhibit some common features: (i) the position effect is
stronger when the default intensity is larger, which is intuitive, as the zero default limit is the BS complete
market model that has no position effect; (ii) the position impact is less in terms of implied volatility for
longer maturities; (iii) the implied volatilities on the downside strikes are very sensitive to the position
effect in this simple jump to default model.

I continue to investigate the position effect on the implied volatility surface, but with large positions
this time. What plotted below are actual implied volatility surfaces, not the relative percentage change
(20). The implied volatility surface for the empty portfolio is plotted in Fig. 12, where the three curves
in the right panel correspond to the ones of the middle column of Fig. 8. For comparison purposes, the
scale is set to be the same as the ones on two other figures, which I now describe. The implied volatility
surface for the large long vertical spread position is plotted in Fig. 13. Notice that the position effect can
cause positive skews for at-the-money options, i.e., dσi

dk |k=s > 0 (cf. the right panel). The implied volatility
surface for the large long butterfly position is plotted in Fig. 14, where the position effect makes the surface
frown in the middle (cf. the solid curve in the right panel), i.e., d2σi

dk2 |k=s < 0.
Compare to the empty portfolio case, the at-the-money implied volatility for the maturity σ2t̄ = 0.1 has

more than doubled. This is somewhat surprising especially for the butterfly position, as it is considered to
be balanced. I think this is due to the unusual feature of this model where a large long call position cannot
suppress the relative implied volatility, as it has a lower bound of one instead of zero. Because of this, the
net effect of the combination of large long and short positions is that the overall implied volatilities are
raised.

In summary, you now have seen conclusive evidence that in an incomplete model, the implied volatility
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Figure 12: The underlying portfolio is empty. The left panel is the implied volatility surface σi/σ. The
three contours on the bottom are for level sets 1.02, 1.10 and 1.18. The right panel shows three different
time to maturity slices at σ2t̄ = 0.05 (dotted), 0.1 (solid) and 0.15 (dashed). The dimensionless default
intensity ζ/σ2 is 0.1.
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Figure 13: Similar to Fig. 12, except that the underlying portfolio is long the “0.75:1.25” vertical call
spread at σ2t̄ = 0.1 with dimensionless position size γns = 50. The contours on the bottom are for level
sets 1.5, 2.0 and 2.5.
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Figure 14: Similar to Fig. 12, except that the underlying portfolio is long the “0.75:1.0:1.25” butterfly at
σ2t̄ = 0.1 with dimensionless position size γns = 50. The three contours on the bottom are for level sets
1.5, 2.0 and 2.5.

surface changes its shape when the underlying position changes,7 i.e., the implied volatility surface can
take on a variety of shapes depending on the underlying position. The position effect in incomplete markets
offers a very plausible explanation on why implied volatility surfaces in the real world fluctuate.

VI Trading Everything

In this section, I examine portfolios that contain both risky bonds and European calls. First let me discuss
the dimensional (units) issue. So far I have been presenting all results in dimensionless units, as there
are natural ways to make various dimensional quantities dimensionless. For example, in Section IV on
trading risky bonds, the natural way to make time t dimensionless is to multiply it with default intensity
ζ; in Section V on trading European calls, σ2t is the natural dimensionless time. But the situation here
is not so clear-cut, because of this I will use both dimensional and dimensionless numbers. The following
parameters are used in the numerical computation: the default intensity is one percent per year (ζ = 0.01);
and the annual stock volatility is 31.62% (σ2 = 0.1). Without loss of generality, the current stock price is
set to one (s = 1).

Suppose the two-year at-the-money call is trading at pc = 0.1817 (relative implied volatility being
1.027), and the ten-year unit face value risky bond is trading at pb = 0.8881 (implied spread being 1.09%),
what would you do? assuming that your initial portfolio is empty. Let me investigate one thing at a time
first. If you cannot trade the risky bond, then the CEPL for trading nc units of the call at the fixed price
pc is h(∗|nc, 0)− ncp

c, which is plotted in the left panel of Fig. 15. It is clear that the optimal trading size
7The position effects for other incomplete models, such as stochastic volatility models with or without transaction costs,

are presented in [16].
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Figure 15: The vertical axes are the dimensionless CEPL γΥ. The contours on the bottom of the right
panel are for level sets 0.002 and 0.004. The left two panels are cross sections of the surface plot along the
two bottom axes.

occurs at γnc = 1.0. If you cannot trade the European call, then the CEPL for trading nb units of the bond
at the fixed price pb is h(∗|0, nb) − nbp

b, which is plotted in the middle panel of Fig. 15. It is clear that
the optimal trading size occurs at γnb = 0.2. When there are no trading constraints, the optimal trading
sizes for the call and the bond are found by numerically maximizing the CEPL h(∗|nc, nb)− ncp

c − nbp
b,

which is plotted in the right panel of Fig. 15. The solution is γnc = 1.482 and γnb = 0.2962. Since h(∗|~n)
is global concave function in the position argument, the optimal trading size problem under a given set of
trading prices always has a unique answer as long as the given prices do not allow arbitrage.

Notice when the trading restrictions are lifted, the optimal trading sizes for both the call and the bond
have increased (from 1.0 to 1.482 for the call and from 0.2 to 0.2962 for the bond), which implies that
these two instruments has complimentary risk characteristics, in a sense I now make more precise.

It will be apparent in a minute that the sign of the quantity vi := ∆f i+sf i
s = −f i+f i

x, where x := ln s,
plays an important role. PDE (13) for the fair value can be rewritten as

f i
t +

1
2
σ2vi

x + Q1v
i = 0 (21)

where Q1 is defined as

Q1 := ζ exp(γπ̄)− γs(nh
0 + hs)σ2 (22)

Using the definition for vi and (21), it is easy to show that vi satisfies the PDE

vi
t + (

1
2
σ2 + Q1)vi

x +
1
2
σ2vi

xx + (Q1x −Q1)vi = 0 (23)

This is a diffusion type linear homogeneous PDE, applying the well-known Feynmann-Kac formula leads to
the conclusion that if vi(Ti, s) has a single sign, then vi(t, s) will have the same sign. If the ith instrument
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is a European call, then vi(t, s) > 0, as vi(Ti, s) ≥ 0; but if the ith instrument is a risky bond, then
vi(t, s) < 0, as vi(Ti, s) < 0. Note unlike the case in Section IV where fair values for risky bonds are stock
price independent, as soon as there are calls in the portfolio, f i

s 6= 0 for any risky bond due to the position
effect term (nh

0 + hs).
I now investigate how the fair value f i of the ith instrument changes if the underlying position is

perturbed along the direction ~ej of the jth instrument, where ~ej is a vector of zeros except that the jth
entry is one. This change is characterized by the quantity f ij , which is defined as

f ij(t, s|~n) := lim
m→0

1
m

[
f i(t, s|~n + m~ej)− f i(t, s|~n)

]
=

∂f i

∂nj
(24)

Taking partial derivatives with respect to nj on PDE (13) and the hedging equation (12) leads to

f ij
t + Q1sf

ij
s +

1
2
σ2s2f ij

ss −Q1f
ij −Q2v

ivj = 0 (25)

where Q2 is defined as

Q2 :=
γσ2ζ exp(γπ̄) exp(γnh

0s− γ∆h)
σ2 + ζ exp(γπ̄) exp(γnh

0s− γ∆h)
> 0 (26)

Note that the derivation involves the use of the tangent relation ∂h/∂nj = f j . The final condition on
f ij is obviously zero, as the payoff function is position independent. To summarize, f ij satisfies a linear
inhomogeneous diffusion type PDE with zero final condition. Observe that the source term of the PDE
−Q2v

ivj is always negative if both the ith and the jth instruments belong to the same type (both calls or
both bonds), however, the source term is positive if they belong to different types (one call and one bond).

Applying the well-known Feynman-Kac formula with zero final condition to (24) leads to the immediate
conclusion that f ij < 0 if the ith and the jth instruments belong to the same type, and f ij > 0 if they
belong to different types. The financial interpretation is as follows: For European calls, buying/selling a call
lowers/raises fair values for all calls regardless of strikes and maturities, or equivalently buying/selling a call
suppresses/elevates implied volatilities for all calls. For risky bonds, buying/selling a bond lowers/raises
fair values of all bonds regardless of maturities, or equivalently buying/selling a bond widens/shrinks
implied yield spreads for all risky bonds. These conclusions are intuitive, they are the consequence of risk
aversion in incomplete markets.

Two instruments are said to have the same risk characteristics if buying/selling one always lowers/raises
the fair value of the other; similarly they are said to have complimentary risk characteristics if buying/selling
one always raises/lowers the fair value of the other. Note putting two instruments of complimentary risk
characteristics together in a portfolio has the effect of hedging each other. European calls and risky bonds
have complimentary risk characteristics, as buying one will make you want to buy more of the other, which
explains the earlier result that when trading restrictions are lifted, the final local equilibrium state contains
more calls and bonds.

Trading a Convertible Bond

Now enlarge the trading universe by including a five-year unit face value convertible bond (CB) with
conversion ratio 0.8. The conversion price, i.e., the strike price of the embedded equity option is 1.0/0.8 =
1.25. In other words, the convertible bond can be viewed as a subportfolio containing one unit of five-year
risky bond and 0.8 units of five-year European call with the strike being 1.25.
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Figure 16: The horizontal axis is the dimensionless trading size γm for the CB. The vertical axis is the
trading price. The solid curves are for the quote price and the dashed ones are for the reserve price. The
horizontal dotted lines represent the current fair value for the CB (1.121). The panels from left to right
are for (i) no static hedging, (ii) static hedging with the call only, (iii) static hedging with the bond only,
and (iv) static hedging with both instruments.

Recall that the current portfolio (pre-trade position) contains γnc = 1.482 units of the two-year at-the-
money call, and γnb = 0.2962 units of the ten-year risky bond. In addition you are short γnh

0 = −0.8628
shares of the stock to hedge the pre-trade position. The fair value for the convertible bond based on the
pre-trade position is 1.121.

The focus next is on how to make rational trading decisions with respect to this convertible bond
under various static hedging conditions,8 which are (i) no static hedging, (ii) static hedging with the call
only at price 0.1817, (iii) static hedging with the bond only at price 0.8881, (iv) static hedging with both
instruments at the stated price. Note that dynamic hedging using the stock is allowed in all four cases.

The quote and reserve price curves of the CB under the four static hedging cases are plotted in Fig. 16.
As usual, the quote and reserve price curves are flatter when more instruments are available for static
hedging, i.e., when the market is more complete. Note if the hedging instruments were a five-year bond
and a five-year call with strike 1.25, then the quote and reserve price curves for the CB would have been
flat lines, because the CB payoff function can be statically spanned by the new hedging instruments, so
arbitrage pricing is applicable. In this example, the ten-year bond is a much better hedging instrument than
the two-year call, as there is a big difference between the second and third panel in the figure. Furthermore
when both hedging instruments are present, the impact of the two-year call is small, especially in the
buying segment of the curves (see the third and forth panels). This fact can also be seen from the optimal
CEPL plots in Fig. 17, as the dash dotted and the solid curves are very close. Earlier comments on Fig. 6
are also applicable to the current optimal CEPL figure.

8See Section XII of [15] for basic concepts and formulas with regard to static hedging.
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Figure 17: The horizontal axis for the left panel is the dimensionless trading size γm, the one for the right
panel is the trading edge p− q(0), where p is the trading price and q(0) is the current fair value 1.121; the
vertical axis is the dimensionless optimal CEPL γΥo. The lines are for (i) no static hedging (dotted), (ii)
static hedging with the call only (dashed), (iii) static hedging with the bond only (dash dotted), and (iv)
static hedging with both instruments (solid).

I now examine the hedging quantities of various hedging instruments, which are computed endogenously
from the model without any guesswork. The number of extra shares of the stock used for hedging the
portfolio is plotted in the left panel of Fig. 18, by extra I mean it is the optimal hedging shares based
on the post-trade position minus the shares used to hedge the pre-trade position (−0.8628). Because the
nonlinear position effect are not strong for small positions, the curves in the left panel are close to straight
lines, which would have been the case if the model market were complete. Obviously you need to short
the stock to hedge a long CB position, and vice versa. The right panel shows that you need to short the
ten-year bond to hedge a long CB position, and vice versa, which is also intuitive. However, the middle
panel is interesting. It says that you need to long the two-year call to hedge a long CB position, even at
the presence of the ten-year bond (the solid curve in the middle panel). It turns out that in this example
the bond component risk of the CB outweighs its call component risk. Since the maturities of the five-year
CB and the ten-year bond do not quite match, the system requires you long the two-year call to hedge the
residual bond component risk in the CB, bearing in mind that calls and bonds have complimentary risk
characteristics. You may wonder what happens when the ten-year bond is replaced by the five-year bond
for static hedging. Such a static hedging scenario is plotted in Fig. 19. As expected, when the hedging
bond maturity matches that of the CB, the optimal static hedge requires you to short the two-year call for
a long CB position, and vice versa, see the solid curve in the middle panel.
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Figure 18: The horizontal axis is the dimensionless trading size γm for the CB. The vertical axis for the
left panel is the number of extra shares of the stock used to dynamically hedge the portfolio at the current
state (t, s); the vertical axis for the middle panel is the number of calls used in static hedging; the vertical
axis for the right panel is the number of bonds used in static hedging. The lines are for (i) no static
hedging (dotted), (ii) static hedging with the call only (dashed), (iii) static hedging with the bond only
(dash dotted), and (iv) static hedging with both instruments (solid).
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Figure 19: Similar to Fig. 18, except for the different static hedging instruments and hedging prices, which
are: the two-year at-the-money call (same as before) trading at 0.1853, and the five-year bond (replacing
the ten-year bond) trading at 0.9512.
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VII The Magical BS Formula

Suppose the market price of the longest maturity risky bond is specified as the following continuous-time
process

db = u(t)b dt− b dQ (27)

where u(t) is a deterministic positive function. Furthermore you are allowed to trade this bond continuously
without any transaction cost. So now you have two instruments to do dynamic hedging, i.e., the stock and
the longest maturity risky bond. In this situation, the market is complete, which is intuitive, as the two
risk sources dB and dQ can now be eliminated through dynamic tradings of the stock and the bond.

In such a complete market, all other instruments can be priced using preference-free arbitrage argu-
ments. The hedging strategy for other risky bonds is simply to short the same amount of the longest
maturity bond. It is easy to see that prices of other risky bonds must satisfy (27) as well to avoid ar-
bitrages. For a Ti maturity European call option f i, a portfolio containing one call, −f i

s shares of the
stock, and the amount f i − sf i

s invested in risky bonds of the same maturity is immune to both the stock
movement risk as well as the default risk. Applying Ito’s lemma leads to the PDE

f i
t − u(t)sf i

s +
1
2
σ2s2f i

ss + u(t)f i = 0 (28)

which has the solution (for a European call)

f i(t, s, Ti, k) = sN (d1)− zikN
(
d1 − σ

√
Ti − t

)
(29)

where N(x) is the cumulative normal distribution function, k is the strike price, zi is the market price
of the Ti maturity risky bond, and d1 :=

[
ln(s)− ln(zik) + 1

2σ2(Ti − t)
]
/σ
√

Ti − t. This is simply the
well-known BS formula except that the discount factor is replaced by the price of the risky bond [2].

Formula (29) is derived based on the arbitrage argument of a complete market. There is no doubt
about the mathematical validity of the derivation. The issue is about modeling. Is the bid-ask spread on
the long maturity risky bond almost always near zero? Does the empirical observation of the market price
process satisfy (27)? If the answer to either one of these two questions is negative, then it is inappropriate
to complete the market by make such an aggressive assumption, i.e., being able to continuously trade a
security with an exogenously specified price process. Therefore it is reasonable to question the usefulness
of formula (29) whose derivation is based on conditions that are rarely satisfied in reality.

Actually the validity of the BS formula (29) extends well beyond its complete market based derivation,
hence the magic. I now show that (29) is also valid under the SJD-DOPE when there are no call positions
in the portfolio. With only bonds and the stock in the portfolio, both the portfolio indifference price h

and the optimal stock hedging amount πh := nh
0s are independent of s, which is the situation discussed in

Section IV. Hence the position effect term s(nh
0 + hs) in (13) is only a function of t, so (13) can be written

as

f i
t − ũ(t)sf i

s +
1
2
σ2s2f i

ss + ũ(t)f i = 0 (30)

where ũ(t) can be computed given an underlying bond position. Let the market price of the Ti maturity
risky bond be zi, you can always trade with the market to establish a local equilibrium in which your fair
value of the Ti bond based on the post-trade position is also zi. Having done that, your fair value for any
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Figure 20: The vertical axes are relative errors between (29) and that of the SJD-DOPE for at-the-money
calls with three different time to maturities: σ2t̄ = 0.05 (top row), 0.1 (middle row), and 0.15 (bottom
row). The horizontal axes are the dimensionless position size γ|~n| for the underlying position, where ~n

represents: (i) at-the-money call (solid), (ii) “0.75:1.25” vertical call spread (dashed), (iii) “0.75:1.0:1.25”
butterfly (dotted). The time to maturity for all three positions is fixed at σ2t̄ = 0.1. The left, middle and
right columns are for ζ/σ2 = 0.05, 0.1, and 0.15, respectively.

European call is then given by (29), because the fair value of the Ti risky bond satisfies the same equation
(30) (with derivatives with respect to s being zero).

Even with small call positions, formula (29) is expected to do well because it has the same qualitative
inventory control feature of the SJD-DOPE solution. This conclusion is based on the fact that f i in (29) is
a decreasing function of zi. The argument goes like this: buying a call raises the fair value of the Ti risky
bond (since they have complimentary risk characteristics), so f i according to (29) is lowered (because zi

has increased), which agrees with that of the SJD-DOPE (two calls have the same risk characteristics).
The other scenarios (selling a call, buying a bond, and selling a bond) can be analyzed analogously.
In each scenario, the qualitative outcome of (29) agrees with that of the SJD-DOPE. To see how good
an approximation formula (29) is to that of the SJD-DOPE, relative errors of at-the-money calls under
various position and position sizes are plotted in Fig. 20. The overall conclusion is that for moderate
position sizes, the magical formula (29) has only about a few percent relative errors. Let me comment that
the test positions in Fig. 20 do not contain bonds. Adding bonds to the underlying position can noticeably
change curves in the figure. Needless to say all curves pass through the origin.

The BS formula has been battle tested by practitioners for many years. It is reassuring that SJD-DOPE
confirms its usefulness. The BS formula is often used as an interpolation device [7], in the sense that
parameters in the formula are replaced by market prices of relevant instruments. Such ad hoc procedures
usually work well in reality, but theoretical justifications for them are often murky. The new approach
in derivatives pricing is promising, as it does not require aggressive assumptions of complete markets; it
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is logically consistent; and more importantly, it tells you, in a systematic way, what to do when market
prices and your model fair values do not agree.

VIII Conclusion

The simple jump to default model is the simplest model I can think of that is both incomplete and has a
continuous trading component (the stock) for dynamic hedging. Despite its simplicity, the model exhibits a
rich variety of features. The new results on this very old model are made possible by the idea of embedding
derivatives pricing in the context of portfolio optimization. I hope the analysis of this model has dispelled
any doubt you may have on the validity and usefulness of the new approach.

Appendix: Derivation of the SJD-DOPE

I now go through a set of well-defined steps (see the recipe in Section 3.5 of [16]) to derive the SJD-DOPE.
The exogenously specified dynamical equation for the stock price is

ds = s[(ν − ηζ) dt + σ dB] + ∆s dQ (31)

where ∆s := ηs with η being the percentage jump size when the Poisson event dQ happens. In the jump
to default model, η will be set to −1 in the end. But there is no harm in leaving a general η during the
derivation. Applying Ito’s lemma to the fair value f i(t, s) of the ith European derivative instrument leads
to

df i = [f i
t + (ν − ηζ)sf i

s +
1
2
σ2s2f i

ss] dt + σsf i
s dB + ∆f i dQ (32)

where ∆f i := f i(t, s + ∆s)− f i(t, s).
I introduce a shorthand notation, which will be used in the sequel. An Ito type stochastic differential

equation for a dynamic state variable z is written as

dz = C(z,t) dt + C(z,x) dBx + C(z,y) dBy + · · · (33)

where dBx and dBy are Brownian motions for the random factors x and y, respectively. Equation (33)
should be viewed as the definition for the shorthand notation C(∗,∗) of the coefficients in a stochastic
differential equation. For example, from (31) C(s,t) = (ν − ηζ)s, and from (32) C(f i,s) = σsf i

s.
With n0 shares of the stock and ni of the ith European style derivative in the portfolio, the change of

wealth dw during a small time interval dt is

dw = n0 ds +
N∑

i=1

ni df
i

=

[
n0C(s,t) +

N∑
i=1

niC(f i,t)

]
dt +

[
n0C(s,s) +

N∑
i=1

niC(f i,s)

]
dB + ∆w dQ

:= C(w,t) dt + C(w,s) dB + ∆w dQ (34)

where ∆w := n0∆s+
∑N

i=1 ni∆f i. The explicit expressions for C(w,t) and C(w,s) can be found by substituting
in the coefficients C(s,∗) and C(f i,∗).
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The value function J for this problem is defined as

J(t, w, s) := sup
n0,ni

E[U(w(T ))] (35)

where U is the exponential utility function and T is the investment horizon that is assumed to be longer
than any derivative maturity Ti. Assuming the position ~n remains optimal, the necessary condition for
optimality is the HJB equation

sup
n0,ni

[LJ + ζ∆J ] = 0 (36)

with LJ being defined as

LJ := Jt + C(s,t)Js + C(w,t)Jw

+
1
2
C2

(s,s)Jss +
1
2
C2

(w,s)Jww + C(s,s)C(w,s)Jsw (37)

where the subscripts on J denote partial derivatives. The quantity ∆J in (36) is defined as

∆J := J(t, w + ∆w, s + ∆s)− J(t, w, s) (38)

The expression supn0,ni
means that the first order derivative of the HJB equation with respect to n0 and

ni should be zero, respectively. The condition ∂(HJB)/∂n0 = 0 leads to the equation

C(s,t)Jw + C(s,s)

[
C(w,s)Jww + C(s,s)Jsw

]
+ ζ∆s Jw(t, w + ∆w, s + ∆s) = 0 (39)

The condition ∂(HJB)/∂ni = 0 gives rise to the equation

C(f i,t)Jw + C(f i,s)

[
C(w,s)Jww + C(s,s)Jsw

]
+ ζ∆f i Jw(t, w + ∆w, s + ∆s) = 0 (40)

For the exponential utility function, try the solution ansatz

J(t, w, s) = −1
γ

exp

[
−γw − γφ̄(t)− γh(t, s) + γ

N∑
i=1

nif
i(t, s)

]
(41)

Substituting (41) into (39) leads to

(ν − ηζ)− γs(n̂0 + hs)σ2 + ηζ exp(−ηγn̂0s− γ∆h) = 0 (42)

where n̂0 is the optimal number of shares of the stock to hold. Recall that when there is no derivative
position (~n = ~0 and h(t, s) = 0), the optimal number of shares in the portfolio is the solution of the pure
stock investment problem, which is denoted as n̄0 that satisfies

(ν − ηζ)− γsn̄0σ
2 + ηζ exp(−ηγn̄0s) = 0 (43)

By definition, the optimal number of hedging shares nh
0 for the derivative position is nh

0 := n̂0 − n̄0. From
(42) and (43), nh

0 satisfies

γs(nh
0 + hs)σ2 − ηζ exp(−ηγπ̄)

[
exp(−ηγsnh

0 − γ∆h)− 1
]

= 0 (44)

where π̄ := n̄0s is the optimal directional bet amount. After setting η to minus one, (43) becomes the
optimal directional bet equation (8), and (44) becomes the optimal hedging equation (12).
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Substituting (41) into (40) leads to

f i
t + [(ν − ηζ)− γs(n0 + hs)σ2]sf i

s +
1
2
σ2s2f i

ss + ζ exp(−ηγsn0 − γ∆h) ∆f i = 0 (45)

When dynamic hedging is allowed, which is the case here, n0 takes on its optimal value n̂0. Under optimal
dynamic hedging, the equation for f i becomes

f i
t +

1
2
σ2s2f i

ss +
[
1
η
(nh

0 + hs)σ2 + ζ exp(−ηγπ̄)
]
(∆f i − ηsf i

s) = 0 (46)

This becomes the fair value linear PDE (13) after setting η to minus one.
Substituting (41) into (36) leads to (after some algebra)

φ̄t + ht + (ν − ηζ)shs +
1
2
σ2s2hss + (ν − ηζ)sn0 −

1
2
γs2(n0 + hs)2σ2

− 1
γ

ζ [exp(−ηγsn0 − γ∆h)− 1] +
N∑

i=1

nif
i(Ti, s)δ(t− Ti) = 0 (47)

where δ() is the well-known Dirac delta function, and f i(Ti, s) is the known payoff function of the ith
European derivative. To explain the source of the last term (sum of delta functions) on the left-hand side
of (47), I need to go back to expression (41) for J . The term

∑N
i=1 nif

i jumps across a maturity time Ti,
because ni jumps to zero as time goes from Ti− to Ti+. Since the value function J is continuous, h must
also jump across a maturity time Ti to counteract. The delta function impulse term in (47) is needed to
take into account this temporal discontinuity of h. The term φ̄ in (47) is the CEPL for the pure stock
investment problem (i.e., ~n = ~0 and h = 0) that satisfies the equation

φ̄t + (ν − ηζ)sn̄0 −
1
2
γs2n̄2

0σ
2 − 1

γ
ζ [exp(−ηγsn̄0)− 1] = 0 (48)

which is the same as (9) bearing in mind η = −1 and sn̄0 = π̄. Under optimal dynamic hedging, n0 takes
on its optimal value n̂0 = n̄0 + nh

0 . Substituting (43), (44) and (48) into (47) leads to (again after some
algebra)

ht +
1
2
σ2s2hss −

1
2
γσ2s2(nh

0 + hs)2

− 1
η
[σ2 + η2ζ exp(−ηγπ̄)]s(nh

0 + hs) +
N∑

i=1

nif
i(Ti, s)δ(t− Ti) = 0 (49)

which becomes (11) after setting η to minus one.
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